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Abstract

In this paper we focus on the long-term behavior of generalized polynomial chaos
(gPC) and multi-element generalized polynomial chaos (ME-gPC) for partial differ-
ential equations with stochastic coefficients. First, we consider the one-dimensional
advection equation with a uniform random transport velocity and derive error esti-
mates for gPC and ME-gPC discretizations. Subsequently, we extend these results
to other random distributions and high-dimensional random inputs with numerical
verification using the algebraic convergence rate of ME-gPC. Finally, we apply our
results to noisy flow past a stationary circular cylinder. Simulation results demon-
strate that ME-gPC is effective in improving the accuracy of gPC for a long-term
integration whereas high-order gPC cannot capture the correct asymptotic behav-
ior.
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1 Introduction

Polynomial chaos (PC) has been used extensively in the last decade to model
uncertainty in physical applications [1–6]. It is based on the original ideas of
homogenous chaos (Wiener-chaos) first formulated by Wiener as the span of
Hermite polynomial functionals of a Gaussian process [7]. Ghanem & Spanos
were the first to combine Wiener-chaos with a finite element method to model
uncertainty addressing solid mechanics applications [1,8,9]. A more general
framework, termed generalized polynomial chaos (gPC), was proposed in [10]
by Xiu & Karniadakis, following the framework of Ghanem & Spanos, based
on the correspondence between the PDFs of certain random variables and the
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weight functions of orthogonal polynomials of the Askey scheme. The family
of gPC includes Hermite-chaos as a subset and provides optimal bases for
stochastic processes represented by random variables of commonly used dis-
tributions, such as uniform distribution, Beta distribution, etc. Polynomial
chaos was combined with wavelets in [11,12] to deal with discontinuities for
uniform random inputs for which standard PC or gPC fails to converge. To
solve differential equations with stochastic inputs following the procedure es-
tablished by Ghanem & Spanos, the random solution is expanded spectrally
by polynomial chaos and a Galerkin projection scheme is subsequently used
to transform the original stochastic problem into a deterministic one with a
large dimensional parameter [1,10,6].

On the other hand, Deb, Babus̆ka & Oden [13] have proposed to employ finite
elements in the random space to approximate the stochastic dependence of
the solution. This approach also reduces a stochastic differential equation to
a high dimensional deterministic one. This method was later studied theo-
retically within the framework of deterministic finite element method in [14].
Since a finite element method is generally used to solve the obtained deter-
ministic PDE system, the above methods are called stochastic Galerkin finite
element method in [14] while the scheme in [1,10] is classified as p× h version
and the scheme in [13] as k × h version. Here p denotes the polynomial or-
der of polynomial chaos, k the element size in the random space, and h the
element size in the physical space. Both schemes use finite elements in the
physical space. The p×h version relies on the global representation in the en-
tire random space by polynomial chaos while the k×h version is based on the
discretization of the random space using the same basis as the deterministic
finite element method to approximate the random field locally. Both concepts
and the terminology introduced here have similarities with the spectral/hp
element method for deterministic problems [15,16].

Although gPC works effectively for many problems, e.g., elliptic and parabolic
PDEs with stochastic coefficients [14,6], it cannot deal with some other dif-
ferential equations, e.g., the Kraichnan-Orszag’s three-mode ODE system for
modeling turbulence [17] or the Navier-Stokes equations for unsteady noisy
flows such as flow past a stationary cylinder [18]. For these problems gPC
fails to converge after a short time, and increasing the polynomial order helps
little for the convergence. There exist at least two reasons for the divergence
of gPC:

(1) Singularity in the random space, and
(2) Long-term intergration.

The former was studied in [11,12] with Wiener-Haar expansions and in [19,20]
with ME-gPC. In this work, we focus on the second one: long-term integra-
tion. In particular, we are interested in the cases which are related to random
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frequencies. We use a simple one-dimensional advection equation with a uni-
form random transport velocity as a model problem. We first derive the error
estimates of gPC and ME-gPC for the Legendre-chaos expansion. Based on
these error estimates we obtain a relation between gPC and ME-gPC, which
we verify by numerical computations. We subsequently generalize such a re-
lation to other random distributions and more general random inputs. Lastly,
we consider a physical problem: noisy flow past a stationary circular cylinder,
where we use the obtained results to analyze the convergence of gPC and
ME-gPC.

This paper is structured as follows. In section 2 we present an overview of
gPC and ME-gPC. In section 3 we study theoretically the one-dimensional
stochastic advection equation. In section 4 we present results for stochastic
simulations of noisy flow past a stationary circular cylinder. We conclude with
a short discussion in section 5.

2 Overview of gPC and ME-gPC

Let (Ω,F , P ) be a complete probability space, where Ω is the sample space, F
is the σ-algebra of subsets of Ω and P is a probability measure. An Rd-valued
random variable is defined as

Y = (Y1(ω), . . . , Yd(ω)) : (Ω,F) 7→ (Rd,Bd), (1)

where d ∈ N and Bd is the σ-algebra of Borel subsets of Rd. If uncertainty
is included in the PDEs, the solutions can be referred to as a random field
u(x, t; ω), where x denotes the physical space and t the time. For any fixed x
and t, u(x, t; ω) is a Rdp-valued random variable, where dp is the dimension of
physical domain (dp ≤ 3). We generally assume that u(x, t; ω) is a second-order
random field denoted as u(x, t; ω) ∈ L2(Ω,F , P ), where

∫

Ω
u2(x, t; ω)dP (ω) < ∞. (2)

We expect that all viscous flow satisfy this constraint.

2.1 Generalized polynomial chaos (gPC)

Generalized polynomial chaos is a spectral polynomial expansion for a second-
order random field u(x, t; ω), i.e.,

u(x, t; ω) =
∞∑

i=0

âi(x, t)Φi(Y (ω)), (3)
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where {Φi(Y )} denote the basis of gPC in terms of Y ; this spectral expansion
converges in the L2 sense. We usually select a weighted orthogonal system
{Φi(Y )} in L2(Ω,F , P ) satisfying the orthogonality relation

〈ΦiΦj〉 = 〈Φ2
i 〉δij, (4)

where δij is the Kronecker delta, and 〈·, ·〉 denotes the ensemble average with
respect to the probability measure P . The index in equation (3) and d ∈ N
are, in general, infinite. In practice, both limits will be truncated at a certain
level.

For a certain Rd-valued random variable Y , the gPC basis {Φi} can be chosen
in such a way that its weight function has the same form as the probability
density function (PDF) of Y . The corresponding type of classical orthogonal
polynomials {Φi} and their associated random variable Y are listed in table 1
[10]. For arbitrary probability measures, the orthogonality must be maintained
numerically, as we explain in the next subsection.

Table 1
Correspondence of the type of Wiener-Askey polynomial chaos and their underlying
random variables (N ≥ 0 is a finite integer).

Random variables Y Wiener-Askey chaos {Φi(Y )} Support

Continuous Gaussian Hermite-chaos (−∞,∞)

gamma Laguerre-chaos [0,∞)

beta Jacobi-chaos [a, b]

uniform Legendre-chaos [a, b]

Discrete Poisson Charlier-chaos {0, 1, 2, . . . }
binomial Krawtchouk-chaos {0, 1, . . . , N}

negative binomial Meixner-chaos {0, 1, 2, . . . }
hypergeometric Hahn-chaos {0, 1, . . . , N}

2.2 Multi-element generalized polynomial chaos (ME-gPC)

We assume that Y is defined on B = ×d
i=1[ai, bi], where ai and bi are finite or

infinite in R and the components of Y are independent identically-distributed
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(i.i.d.) random variables. We define a decomposition D of B as

D =





Bk = [ak,1, bk,1)× [ak,2, bk,2)× · · · × [ak,d, bk,d],

B =
⋃N

k=1 Bk,

Bk1

⋂
Bk2 = ∅, if k1 6= k2,

(5)

where k, k1, k2 = 1, 2, · · · , N . Based on the decomposition D, we define the
following indicator random variables

IBk
=





1 if Y ∈ Bk,

0 otherwise.
(6)

Thus, Ω = ∪N
k=1I

−1
Bk

(1) is a decomposition of the sample space Ω, where

I−1
Bi

(1) ∩ I−1
Bj

(1) = ∅, for i 6= j. (7)

Subsequently, we define a new Rd-valued random variables ζk : I−1
Bk

(1) 7→
Bk on the probability space (I−1

Bk
(1),F ∩ I−1

Bk
(1), P (·|IBk

= 1)) subject to a
conditional PDF

fk(y|IBk
= 1) =

f(y)

Pr(IBk
= 1)

, (8)

where f(y) denotes the PDF of Y and Pr(IBk
= 1) > 0. In practice, we usually

map ζk to a new random variable Y k defined on [−1, 1]d to avoid numerical
overflow in computer [20], using the following linear transform

ζi = g(Yi) : ζi =
bk,i − ak,i

2
Yi +

bk,i + ak,i

2
, (9)

where i = 1, 2, · · · , d and k = 1, 2, · · · , N . To this end, we present a decom-
position of random space, which is very similar with the decomposition of
physical space using separable elements.

Based on the random variables {Y k}, a scheme, called multi-element general-
ized polynomial chaos (ME-gPC), was proposed in [19,20]. Based on ME-gPC,
u(x, t; ω) can be expressed as [19]

u(x, t; ω) =
N∑

k=1

M∑

i=0

âk,i(x, t)Φk,i(Y k(Y ))IBk
, (10)

where {Φk,i} is the local chaos basis in element k and M is the number of
chaos modes. The key idea of ME-gPC is to implement gPC element-by-
element when the global spectral expansion is not efficient to capture the
random behavior. Thus, the basic procedure of ME-gPC is quite similar with
the deterministic spectral element method. In the decomposition of physical
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space using continuous Galerkin projections, we need to treat carefully the
connectivity (C0 continuity) between two adjacent elements; however, in the
decomposition of random space the following C0-type continuity

uB1(Y ) = uB2(Y ), Y ∈ B̄1 ∩ B̄2, (11)

where B̄i is the closure of element Bi, is not required since the Lebesgue mea-
sure of the interface between two random elements is zero and most statistics
we are interested in are defined as a Legesgue integration.

In the decomposition of random space, the PDF of Y is decomposed simulta-
neously, which implies that the original gPC basis will, in general, lose local
orthogonality in random elements. The only exception is the Legendre-chaos
for the uniform distribution [19]. For other distributions, orthogonal polyno-
mials with respect to the PDF of local random variable Y k can be constructed
numerically. Given an arbitrary PDF, the Stieltjes procedure and the Lanczos
algorithm [21] can be used to construct the following orthogonal system

πi+1(t) = (t− αi)πi(t)− βiπi−1(t), i = 0, 1, · · · ,

π0(t) = 1, π−1(t) = 0, (12)

where {πi(t)} is a set of (monic) orthogonal polynomials,

πi(t) = ti + lower-degree terms, i = 0, 1, · · · (13)

and the coefficients αi and βi are uniquely determined by a positive (prob-
ability) measure. The orthogonal system {πi(Y )} will serve as a local gPC
basis.

In ME-gPC, relative low polynomial orders (5 to 8) are preferred locally; thus,
the numerical re-construction can be implemented efficiently and accurately
[20]. Numerical experiments show that the cost of maintaining local orthogo-
nality is negligible compared to the cost of a standard Galerkin gPC solver.

3 Long-term integration of gPC and ME-gPC

In this section we study the long-term behavior of gPC and ME-gPC analyt-
ically using the following one-dimensional stochastic advection equation

∂u

∂t
+ V (ξ)

∂u

∂x
= 0 (14)

subject to the initial condition

u(x) = u0(x; ξ), (15)
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where ξ is a one-dimensional uniform random variable defined on [−1, 1] and
V (ξ) ∈ L2(Ω,F , P ). In particular, we assume that

V (ξ) = v̄ + σξ, u0(x; ξ) = sin nπ(1 + x), x ∈ [−1, 1], (16)

where σ is a constant, v̄ is the mean of transport velocity and n ∈ N. It is
easy to obtain the exact solution for this case as

u(x, t; ξ) = sin nπ(1 + x− (v̄ + σξ)t), (17)

which shows that the frequency of this stochastic process is random.

3.1 Error estimates for gPC

Let {Pi(ξ)} denote the orthogonal basis of Legendre-chaos and PM denote the
projection operator as

PMu(x, t; ξ) =
M∑

i=0

ui(x, t)Pi(ξ), (18)

where

ui(x, t) =
1

〈P 2
i (ξ)〉

∫ 1

−1
u(x, t; ξ)Pi(ξ)

1

2
dξ. (19)

We study the convergence of PMu(x, t; ξ) since it can demonstrate the main
properties of numerical convergence.

Theorem 1 Let εM denote the error of the second-order moment of PMu.
Given time t and polynomial order M , εM can be bounded as

εM ≤ C(M)
q2M+2
M

1− q2
M

, (20)

where C(M) is a constant depending on M and

qM =
σnπet

2M + 2
< 1. (21)

Here e is the base of natural logarithm.

PROOF. According to the following formula in [22]

sin cπ(z + a) =
1√
2c

∞∑

i=0

(2i + 1)Ji+1/2(cπ) sin(cπa +
1

2
iπ)Pi(z), (22)
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we obtain the polynomial chaos expansion of the exact solution (17) as

u = − 1√
2nσt

∞∑

i=0

(2i + 1)Ji+1/2(σnπt) sin(nπ(v̄t− x− 1) +
1

2
iπ)Pi(ξ), (23)

where Ji+1/2 are Bessel functions of the first kind. Using the orthogonality of
Legendre polynomials, we obtain

〈u2(x, t; ξ)〉 =
1

2nσt

∞∑

i=0

(2i + 1)J2
i+1/2(σnπt) sin2(nπ(v̄t− x− 1) +

1

2
iπ), (24)

where 〈Pi(ξ)Pj(ξ)〉 = δij/(2i + 1) is employed. Then εM can be expressed as

εM ≡〈u2〉 − 〈(PMu)2〉
=

1

2nσt

∞∑

i=M+1

(2i + 1)J2
i+1/2(σnπt) sin2(nπ(v̄t− x− 1) +

1

2
iπ). (25)

It is known (see [23]) that

√
π

2σnπt
Ji+1/2(σnπt) =

(σnπt)i

2i+1i!

∫ π

0
cos((σnπt) cos(θ)) sin2i+1 θdθ. (26)

By substituting equation (26) into equation (25), εM can be approximated as

εM =
∞∑

i=M+1

(2i + 1)(σnπt)2i

22i+2(i!)2
Ai sin

2(nπ(v̄t− x− 1) +
1

2
iπ),

where

Ai =
(∫ π

0
cos(σnπt cos(θ)) sin2i+1 θdθ

)2

.

Using Stirling’s formula [23] for the factorial i!, we obtain that

εM ≈
∞∑

i=M+1

(2i + 1)(σnπte)2i

8πi(2i)2i
Ai sin

2(nπ(v̄t− x− 1) +
1

2
iπ),

where e is the base of natural logarithm. For a fixed time t, the error εM can
be bounded as

εM ≤ C1

∞∑

i=M+1

(2M + 3)(σnπet)2i

8π(M + 1)(2M + 2)2i
= C1

(2M + 3)q2M+2
M

8π(M + 1)(1− q2
M)

,

where C1 is a constant and qM = σnπet/(2M +2). Here the condition qM < 1
is assumed for the convergence of summation. We subsequently check the
constant C1. Since sin θ ≥ 0 in θ ∈ [0, π], we obtain that

A
1/2
i ≤

∫ π

0
sin2i+1 θdθ.
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Let Bi =
∫ π
0 sin2i+1 θdθ. Using sin2 θ + cos2 θ = 1, the following relationship

can be obtained

Bi =
∫ π

0
sin2i−1 θdθ −

∫ π

0
sin2i−1 θ cos2 θdθ = Bi−1 −

∫ π

0
sin2i−1 θ cos2 θdθ.

Since the second term on the right-hand side is positive, we know that the
sequence {Bi} is decreasing. Thus, we can bound Ai as

Ai ≤ B2
i ≤ B2

M+1, i ≥ (M + 1).

Let C1 = B2
M+1 and C(M) = C1(2M + 3)/8π(M + 1), then the conclusion

follows immediately.

In Theorem 1, qM < 1 is assumed for the convergence of summation in equa-
tion (3.1). For a general case we have the following corollary:

Corollary 2 Given time t and polynomial order M , εM can be bounded as

εM ≤ 1

2σt

M̂∑

i=M+1

(2i + 1)J2
i+1/2(σnπt) + C(M̂)

q2M̂+2

M̂

1− q2
M̂

, (27)

where qM̂ is a function of M̂ defined as in equation (21) and qM̂ < 1.

3.2 Error estimates for ME-gPC

Let P̂M denote the projection of u(x, t; ξ) onto the basis of ME-gPC.

Theorem 3 Given a decomposition of random space of ξ with element length
Lk = bk − ak, k = 1, 2, · · · , N , the error ε̂M of the second-order moment of
P̂Mu can be bounded as

ε̂M ≤ C(M)
N∑

k=1

q2M+2
k,M

1− q2
k,M

Pr(IBk
= 1), (28)

where C(M) is a constant depending on M and

qk,M =
σnπeLkt

2(2M + 2)
< 1. (29)

PROOF. According to equation (10), we know that P̂M can be expressed as

P̂M =
N∑

k=1

P̂k,MIBk
, (30)
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where P̂k,M is a local projection operator defined as

P̂k,Mu(x, t; ξ) = PMu(x, t;
bk − ak

2
ξ +

bk + ak

2
). (31)

Then, the second-order moment can be expressed as

〈(P̂Mu(x, t; ξ))2〉= 〈
(

N∑

k=1

P̂k,Mu(x, t; ξ)IBk

)2

〉

=
N∑

k=1

〈
(
P̂k,Mu(x, t; ξ)

)2〉Pr(IBk
= 1). (32)

Thus, ε̂M takes the following form

ε̂M =
N∑

k=1

ε̂k,M Pr(IBk
= 1), (33)

where ε̂k,M is the error of the second-order moment of P̂k,Mu(x, t; ξ). We now
check the behavior of ε̂k,M . Given a random element Bk = [ak, bk], the lo-
cal problem in ME-gPC is to find the solution of the following transformed
equation

∂u

∂t
+

(
v̄ + σ

(
bk − ak

2
ξk +

bk + ak

2

))
∂u

∂x
= 0,

where ξk is the local uniform random variable defined on [−1, 1]. The exact
solution of equation (3.2) is

u(x, t; ξk) = sin nπ

[
1 + x−

(
v̄ + σ

(
bk − ak

2
ξk +

bk + ak

2

))
t

]
.

Using a similar procedure as in section (3.1), we can bound ε̂k,M as

ε̂k,M ≤ C(M)q2M+2
k,M

1− q2
k,M

,

where

qk,M =
σnπe(bk − ak)t

2(2M + 2)
< 1.

Using equation (33), the conclusion follows immediately.

3.3 Relation between εM and ε̂M

From theorem 1, we can see that qM increases linearly in terms of time t,
which implies that gPC will lose p-convergence after a finite time. To keep a
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certain accuracy, the polynomial order of gPC must increase with time. Let

δ =
C(M)

1− q2
M

q2M+2
M , (34)

where δ denotes a desired accuracy. By solving such an equation we obtain
that

t =
1

σnπe

(
δ(1− q2

M)

C(M)

)1/(2M+2)

(2M + 2). (35)

Since [δ(1− q2
M)/C(M)]

1/(2M+2) → 1 when M →∞, we obtain that

t ≈ 2M + 2

σnπe
, (36)

which is a linear relation. It is instructive to define the increasing speed of
polynomial order as

dM

dt
≈ σnπe

2
, (37)

which shows that to maintain an accuracy δ the polynomial order must in-
crease at a speed σnπe/2; we note that n/2 is the wave number in the initial
condition. We can see that the speed is proportional to the wave number and
the degree of perturbation, which implies that gPC will quickly fail to con-
verge for a problem with a large perturbation or wave number if a random
frequency in time is involved.

Theorem 4 To maintain a certain accuracy of the second-order moment of
PMu, the polynomial order of gPC must increase with time and the following
relation is satisfied

M ≈ 1

2
σnπet− 1. (38)

We assume that a uniform mesh is employed and p-convergence is maintained,
in other words, qM < 1 and qk,M < 1 with k = 1, 2, · · · , N . Thus, we have

ε̂M = C(M)
q̂2M+2
M

1− q̂2
M

. (39)

The ratio of ε̂M and εM , for a fixed time t and polynomial order M , is

ε̂M

εM

=
(

1

N

)2M+2 1− q2
M

1− ( 1
N

)2q2
M

∼
(

1

N

)2M+2

, (40)

which is consistent with the k-convergence (ε ∝ N−2(M+1)) of ME-gPC (see
[13,14,19,20]). Let us consider that gPC and ME-gPC of polynomial order M
reach accuracy of the same order. To satisfy this, we need to have

qM = q̂M , (41)
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which yields

t̂M = NtM , (42)

where t̂M and tM denote time for ME-gPC and gPC, respectively.

Theorem 5 Suppose that the error, ε, of the second-order moment of gPC of
order M is maintained in the range t ≤ tg. Based on a uniform mesh with N
random elements, ME-gPC of order M can maintain the accuracy O(ε) in the
range t ≤ Ntg. In other words, ME-gPC can extend the valid integration time
of gPC linearly by a factor N .

If the mesh is non-uniform, the aforementioned linearity is still valid; however,
the factor will be less than N . We assume that ∪N

k=1Bk is a decomposition
for ξ of uniform distribution and the length of Bk is an increasing series,
0 < lB1 ≤ lB2 ≤ · · · ≤ lBN

. From the proof of theorem 3, we know that

ε̂M =
N∑

k=1

ε̂k,M Pr(IBk
= 1) ≤ C(M)

N∑

k=1

q2M+2
k,M

1− q2
k,M

lBk

2
, (43)

where

qk,M =
σnπelBk

t

2(2M + 2)
and Pr(IBk

= 1) =
lBk

2
.

We define a function

Q(z) =
q2M+2
z

1− q2
z

,

where

qz =
σnπet

(2M + 2)
z.

It is easy to verify that Q(z) is an increasing function with respect to z. Let
zk = lBk

/2. We can obtain

Q(z1) =
N∑

k=1

Q(z1)zk ≤
N∑

k=1

Q(zk)zk ≤
N∑

k=1

Q(zN)zk = Q(zN),

where
N∑

k=1

zk = 1, 0 < z1 ≤ z2 ≤ · · · ≤ zN .

To satisfy εM = ε̂M , we need

Q(z1) ≤ Q(1) ≤ Q(zN),

which implies that
2

lBN

tM ≤ t̂M ≤ 2

lB1

tM . (44)
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3.4 Other distributions and high-dimensional random inputs

In ME-gPC, the PDF of ξ will be decomposed simultaneously with the random
space; thus, the local orthogonality has to be maintained numerically. The only
exception is the Legendre-chaos [19] due to the nice properties of uniform
distribution. It is, in general, difficult to analyze theoretically the convergence
for the numerical basis of ME-gPC. In this work, we compare the performance
of gPC and ME-gPC numerically for other distributions.

The k-type convergence was shown theoretically in [14,13] to be

‖E[u]− E[uM ]‖L2(D) ≤ Ck2(M+1), ‖E[u2]− E[u2
M ]‖L2(D) ≤ Ck2(M+1) (45)

using an stochastic elliptic model problem, where C is a constant depending on
M , and k denotes the maximum size of random elements. We note here that D
indicates the physical space. It was shown in [19,20] that the index of algebraic
convergence of ME-gPC for the mean and variance goes asymptotically to
2(M +1) for a uniform mesh, which is consistent with equation (45). Note that
the error bound (45) is independent of probability measures. Such observations
imply that for any probability measure the following relation (see equation
(40))

ε̂M

εM

∼ C(M)(
t

N
)2M+2 (46)

holds for the solution of equation (17), where the constant C depends on the
polynomial order M . Here we include the time t together with the number
N of random elements because in the k-th random element of ME-gPC the
solution takes the form

u(x, t; ξk) = sin nπ(1 + x− (v̄k +
σt

N
ξk)), (47)

where t and N can be treated together. From equation (46) we can see that
if we re-scale the time of gPC by the number N , ε̂M/εM will be a constant
depending on the polynomial order. However, such a relation will be reached
asymptotically because of the non-uniform random distribution [20].

It is easy to generalize the obtained results to high-dimensional random inputs.
Since the high-dimensional basis of gPC is constructed by tensor products of
one-dimensional basis, the error of chaos expansion should be dominated by
the summation of errors of one-dimensional truncation. Thus, the results for
the one-dimensional case should be still valid for a high-dimensional case. For
example, if we have d-dimensional uniform random inputs, ME-gPC with Nd

uniform elements should extend the valid integration time of gPC with the
same polynomial order by a factor N . However, in practice, the degree of
perturbation in each random dimension is generally different, and only the
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random dimensions with large perturbations are needed to be refined. Such
cases are more difficult to analyze and beyond the scope of this paper.

3.5 Initial conditions

For the initial condition u0(x; ξ), we intentionally employed functions such
as cosine and sine waves, which introduce “random periodicity” in time for
a given random transport velocity. Such solutions are often encountered in
practice, e.g., random oscillators and simulations of unsteady turbulent or
noisy flows. If the frequency is finite, we know that the random solution can
be expressed by a Fourier transform in the time direction

u(x, t; ξ) =
M/2∑

n=−M/2

ui(x; ξ)ein 2π
T (ξ)

t, (48)

where T (ξ) is the random period. It is obvious that equation (17) represents
the basic properties of each random mode. We note that gPC can effectively
capture the random behavior for some other initial conditions, e.g., u0(x; ξ) =
xn, if the polynomial order is large enough.

The long-term behavior for aforementioned initial conditions is similar to the
spectral expansion of deterministic functions with high wave numbers (see
[24]). Since gPC is indeed a spectral expansion in terms of certain random
variables and the time plays a role similar to a wave number in chaos expan-
sion, the order of gPC must increase with time to maintain a desired accuracy
level.

3.6 Numerical results

Next we present some numerical results for εM and ε̂M . Let n = 1, v̄ = 0, σ = 1
in equation (16). Due to the periodic condition in physical space, we use a
Fourier-collocation method to solve the deterministic PDEs introduced by the
Galerkin projection in the gPC or ME-gPC method. It has been assumed that
qM < 1 for the convergence of summation in equation (21). However, qM is an
increasing function of t, which means that the error εM increases with time
and it will reach O(1) values eventually. In figure 1, we present the evolution
of the error bounds of gPC and ME-gPC, respectively. It can be seen that the
error of ME-gPC increases at the same speed as that of gPC. However, since
ME-gPC is much more accurate than gPC, it takes longer time for ME-gPC
to reach O(1) error. The error εM of eighth-order gPC is O(1) around t = 2.
In figure 2, εM and the corresponding numerical errors are shown, where we
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also plot J2
i+1/2(σnπt) for comparison. It is known that J2

i+1/2(σnπt) decreases
exponentially with i when i is much greater than σnπt; otherwise, there is no
p-convergence. It can be seen that p-convergence does not occur until M ≥ 8
(qM < 1) and the rate of convergence is the same as the decreasing rate of
J2

i+1/2(σtπ) when i →∞.

In figure 3 we demonstrate theorem 5 numerically. According to theorem 5, we
know that the error of gPC at time t should be almost the same as the error
of ME-gPC of the same polynomial order at time Nt for a uniform mesh. For
gPC, we re-scale the time by a factor N while keeping the errors unchanged. It
can be seen that the re-scaled error-time curve of gPC matches very well with
the error-time curve of ME-gPC, and it appears that the errors of ME-gPC
are always bounded by the shifted errors of gPC. We note that the random
inputs are uniform.

To examine if the previous results extend to other random distributions, we
consider Beta and Gaussian distributions. In figure 4, we plot the errors of
gPC and ME-gPC versus time for a Beta distribution Beta(0, 1) while the
time for gPC is re-scaled as before. It is seen that the two curves for gPC and
ME-gPC agree with each other very well. We also compare gPC and ME-gPC
of polynomial order p = 3 in figure 5 when ξ is of Gaussian distribution. For
the ME-gPC method, we first decompose the support of the Gaussian distri-
bution into three random elements: (−∞,−6], [−6, 6] and [6,∞). We subse-
quently decompose the middle element [−6, 6] while keeping the tail elements
unchanged since Pr(ξ ∈ (−∞,−6] or [6,∞)) = 1.97 × 10−9. The influence of
tail elements can be observed only in the early stage, which is clearly shown
in the left plot. Starting from t ≈ 0.5, the tail elements will not affect the
accuracy any more. Thus, we can drop the tail elements when we re-scale
the error curves of gPC by the element number N due to their negligible er-
ror contribution. In the plot on the left, it can be seen that the error curve
re-scaled by factor 2.5 matches the ME-gPC results better than the element
number N = 4. The reason is that Gaussian distribution is non-uniform. If
the middle element is decomposed to four equidistant ones, we know that
Pr(I[−6,3] = 1 or I[3,6] = 1) = 2.7 × 10−3, which implies that the error of ME-
gPC is mainly controlled by elements [−3, 0] and [0, 3] (see equation (33)).
Thus the scale factor should be about 2. In the plot on the right, we can see
that for larger element numbers, the re-scaled error curves of gPC agree well
with the ME-gPC results, which implies the relation presented in theorem 5
will be valid asymptotically for the Gaussian distribution.
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Fig. 1. Evolution of error estimates of gPC and ME-gPC. Here, ξ is uniform in
[−1, 1].

1 2 4 6 8 10 12 14 15
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

M

Error bound for <P
M

u2>

J2
i+1/2

Numerical error

Fig. 2. Convergence of gPC and J2
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4 Application: noisy flow past a stationary circular cylinder

4.1 Random-frequency inflow noise

The aforemenioned issues are often encountered in numerical simulations of
unsteady noisy flows. We now simulate the two-dimensional noisy flow past a
circular cylinder subject to the following random boundary conditions at the
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Fig. 3. Comparison of gPC and ME-gPC of the same polynomial order p = 3.
Normalized numerical errors of the second moment are used. The time of gPC is
multiplied by the number N of random elements. Here, ξ is of uniform distribution
U [−1, 1]. Left: ME-gPC with N = 2; Right: ME-gPC with N = 3.
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Fig. 4. Comparison of gPC and ME-gPC of the same polynomial order p = 3.
Normalized numerical errors of the second moment are used. The time of gPC is
multiplied by the number N of random elements. Here, ξ is of Beta distribution
Beta(0, 1) on [−1, 1].

inflow
u = 1 + σY, v = 0, (49)

where Y is a uniform random variable of zero mean and unit variance and
σ is a prescribed constant indicating the degree of perturbation. For each
value of Y , there exists a corresponding Reynolds number, which determines
a unique vortex shedding frequency. In other words, the shedding frequency
in the stochastic simulation is random.

In figure 6 the mesh used for the discretization in physical space is shown.
Neumann boundary conditions (zero flux) are employed at the outflow and
periodic boundary conditions in the cross-flow direction. The numerical for-
mulation of gPC for the incompressible Navier-Stokes equations was presented
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with N = 4; Right: ME-gPC with N = 8, 16.

in [25], where spectral/hp element methods were employed to solve the large
deterministic PDE system produced by the Galerkin projection in gPC. The
Reynolds number considered in this work is Re = 100.

We first simulate a deterministic case with σ = 0 up to t = 1000 to obtain
a fully developed flow and then introduce 10% noise at the inflow. We plot
the instantaneous mean and variance of lift coefficient CL in figure 7, and
of drag coefficient CD in figure 8. It can be seen that both the mean and
variance of CL given by ME-gPC oscillate periodically around a constant value
with a decreasing amplitude after a short transient stage. This agrees with a
stochastic model of lift coefficient developed in [18,26], where CL is modeled
by a harmonic signal with a random frequency. Based on such a model, the
mean of CL goes to zero while the variance asymptotes a constant value. Good
agreement between gPC and ME-gPC is observed only in the transient stage,
after which gPC begins to diverge. Similar trends are observed for the drag
coefficient CD. The study in previous section shows that the polynomial order
of gPC must increase at about a constant rate (see equation (38)) to maintain
a certain accuracy if a random frequency is involved. In figure 9, we plot the
normalized relative errors of the variance of the lift coefficient using the results
given by ME-gPC with N = 20 and M = 8 as a reference. It can be seen that
the errors of gPC increase quickly to O(1). ME-gPC with N = 20 and p = 6
reaches an error of O(10−2) at t ≈ 135. We note that errors less than 10−5 are
not shown because the output data are truncated after the fifth digit.

In section 3 we have shown that the error of ME-gPC at a fixed time can be
estimated from that of gPC of the same polynomial order but shifted by a
factor N . Here we cannot use this result directly because the decomposition
of random shedding frequencies is not necessarily uniform although the noise
at the inflow is uniform. However, we can estimate the scaling factor from the
simulation results for the errors of gPC and ME-gPC of sixth order, which is
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Fig. 6. Schematic of the domain for noisy flow past a circular cylinder. The size
of the domain is [−15D, 25D] × [−9D, 9D] and the cylinder is at the origin with
diameter D = 1. The mesh consists of 412 triangular elements.

about 12. Using this value we know that the error of ME-gPC with N = 20
and M = 8 at tU/D = 150 should be roughly equal to the error of eighth-order
gPC at tU/D = 150/12, which is O(10−3). Thus, ME-gPC with N = 20 and
M = 8 can provide accurate results in the range tU/D ≤ 150, corresponding to
about 20 shedding periods after the transient stage. In contrast, gPC provides
accurate result up to less than two shedding periods.

In figure 10 the RMS of vorticity is plotted. The global structure is (approxi-
mately) symmetric and the values of RMS of vorticity are decreasing gradually
from the front stagnation point, through the boundary layers, into the wake.
This suggests that the vorticity behind the cylinder should contain a harmonic
signal A(x, Y ) cos(2πfv(Y )t) with random frequencies fv. The RMS of such
a harmonic response will approach

∫
Y A2(x, Y )f(Y )/2dY as t → ∞, where

f(Y ) is the PDF of Y . Since the flux of vorticity decreases in the x direction
due to viscous diffusion, the value of A(x, Y ) should also decrease in the x
direction. This explains qualitatively why we only observe decreasing RMS
values of vorticity in the wake without the von Karmon vortex street.

4.2 Random-amplitude inflow noise

In this section we consider another noisy boundary condition at the inflow

u = 1 + σξ cos 2πfint, v = 0, (50)

where we add a harmonic signal with a random amplitude into the inflow. We
use fin = 0.75fs, where fs is the vortex shedding frequency at Re = 100. Let
ξ be a uniform random variable with zero mean and unit variance. We set σ
to 0.1.

In figure 11 we compare the mean and variance of CL given by gPC and ME-
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Fig. 7. Evolution of mean (upper) and variance (lower) of lift coefficient. Y is uniform
in [−√3,

√
3]. σ = 0.1.

gPC of the same order M = 8, where N = 10 for the ME-gPC. We see that
eighth-order gPC can capture all the statistics up to the second-order in the
range of tU/D ≤ 150 in contrast to the fast divergence of gPC for the random-
frequency noise. Numerical experiments show that for the boundary condition
(50) the frequency of CL is not sensitive to the boundary noise, where the
vortex shedding frequency at Re = 100 is dominant. Thus, the error of gPC
increases much slower than the first case. A similar example is noisy flow past
an oscillating circular cylinder [4], where the frequency is also not sensitive
to the noise and thus gPC can do a good job. Such observations imply that
the presence of random frequencies can cause a significant degradation of the
performance of gPC, and thus employing ME-gPC is necessary for convergent
results.
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5 Summary

In this work we studied the long-term behavior of gPC and ME-gPC by fo-
cusing on problems related to random frequencies. We first analyzed the one-
dimensional advection equation with a uniform random transport velocity, for
which the error estimates of gPC and ME-gPC were derived for the Legendre-
chaos expansion. Based on the error estimates, we found that ME-gPC with a
uniform mesh in random space can extend the valid integration time of gPC
by a factor N , which is the number of random elements. Subsequently, we
extended this relation to other random distributions and verified it by numer-
ical studies on Beta and Gaussian distributions. We then simulated noisy flow
past a stationary circular cylinder, where two different boundary conditions at
the inflow were considered. For the random-frequency noise at the inflow, the
vortex shedding frequency is sensitive to the inflow condition; thus gPC fails
to converge at early integration times but ME-gPC can capture the correct
random behavior effectively. For the random-amplitude noise at the inflow, the
shedding frequency is not as sensitive; thus gPC is valid for a relative longer
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time. This flow problem provides good support for our analysis in section 3.
Although ME-gPC can improve the performance of gPC for problems related
to random frequencies, it also fails asymptotically. To treat this, one choice
is to increase adaptively the number of elements of ME-gPC to maintain a
reasonable accuracy in a desired range of integration time. However, for high-
dimensional random inputs, the effectiveness of ME-gPC will be weakened
since the number of elements may increase fast. Thus, the long-term behavior
of polynomial chaos deserves further study.
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